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ABSTRACT 

An eigenring formula for computing a base ring for an n x n matr ix ring is 

given in the context of the Agnarsson-Ami tsur -Robson  characterization 

of such matr ix  rings. Various other recognition criteria and computat ions 

of "hidden" matr ix  rings are also given. 

1. I n t r o d u c t i o n  

In the last few years there has been a resurgence of interest in the recognition and 

characterization of matrix rings. P. R. Fuchs [Fu], J. C. Robson [R], and more 

recently Agnarsson-Amitsur-Robson [AAR] have obtained several new interest- 

ing criteria for a given ring R to be an n • n matrix ring Mn(A),  and Chatters 

[Chl, Ch2, Ch3], Levy-Robson-Stafford [LRS] have given numerous fascinating 

examples of non-obvious (or "hidden") matrix rings. In the present paper, we 

shall develop these themes some more, and contribute a number of new results 

to this ongoing study. 
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It is well-known that,  if a ring R is an n x n matrix ring, there may exist 

more than one ring A for which R - Mn(A). In a beginning section (w of this 

paper, we consider the Agnarsson-Amitsur-Robson characterization (2.1) of an 

n x n matrix ring R, and give in that context a formula for computing a specific 

base ring A for R (Theorem 2.2). This formula expresses A as an eigenring of 

a certain nilpotent element in R, and is explicit enough to permit various direct 

computations of matrix rings. An illustration for this is given in Example 2.7 

in terms of Morita rings. Another application of Theorems 2.1 and 2.2 is to the 

study of Ore extension rings. Let S = R[t, a, 6] be an Ore extension (a.k.a. skew 

polynomial ring), where a is an endomorphism of the base ring R, and 6 is a a- 

derivation on R. Certain quotients of S may be k x k  matrix rings, and sometimes 

S itself may be an k x k matrix ring (for some k _> 2). In w we give instances 

of these by using the Agnarsson-Amitsur-Robson Theorem 2.1. In each case, 

Theorem 2.2 is applied to make an explicit computation of a base ring for the 

matrix ring in question: see, for instance, Theorems 3.1 and 3.14. A result which 

is particularly easy to state is Theorem 3.5: I f  R is nonzero, and contains an 

e lement  b such that  b m+n = 0 and 6(bin), 6(b n) a r e  both units, then necessarily 

m = n, and S is isomorphic to the (2n) • (2n) matr ix  ring over the eigenring o f  

b i n S .  

In w we study various new characterizations (Theorem 4.1) for an n• matrix 

ring R, in terms of equations involving units and nilpotent elements in R, as well 

as in terms of n th  root properties of certain nilpotent matrices over R. For 

simplicity, we shall only state a special case of this result below, where the Ei, j 's  

denote the standard matrix units throughout this paper. 

THEOREM: For a given integer n >_ 2, a ring R is an n•  matr ix  ring iff for some 

(resp. for all) r >>_ 2, the r x r matr ix  Fo := E2,1 q- E3,2 q - ' "  q- E . . . .  1 over R has 

an nth  root in Mr(R) .  

This implies, in particular, that  if R admits a (unital) homomorphism into 

a nonzero ring which is commutative, or reduced, or without nontrivial idem- 

potents, then F0 can never have an n th  root in Mr  (R) for any r, n _> 2. 

The last section (w concludes with an example of a hidden matrix ring with 

quaternionic entries which generalizes an earlier example of Levy, Robson and 

Stafford in [LRS]. 

ACKNOWLEDGEMENT: We thank the referee for detailed comments on this 
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2. A f o r m u l a  for  t h e  base  r ing 

For the reader's convenience, we first recall the following recognition theorem for 

matrix rings, due to Agnarsson, Amitsur and Robson: 

THEOREM 2.1 ([AAR]): Let m , n  be positive integers. A ring R is an 

(m + n) x (m + n) matr /x ring (over some other ring A) iff there exist elements 

a, f ,  b E R such that fm+~ = O, and a f TM + f %  = 1. 

As we have observed in the Introduction, under the conditions of the theorem, 

the base ring A may not be unique, even up to isomorphism; see, for instance, 

[Ch2], [Ch3], [La3], [La4]. Thus, all. we can realistically hope for is an explicit 

construction of some base ring A. The following result, also based on [AAR], 

provides such a construction. 

THEOREM 2.2: Under the conditions of  Theorem 2.1, we have R ~- Mm+~(A) 

where A = I R ( f R ) / f R .  (Here, I g ( f R )  denotes the idealizer of  the right ideal 

f R  in R.)  

Proof." Assume that  the elements a, f ,  b exist (as in Theorem 2.1). By the 

proof of this theorem in [AAR], there exist two other elements c, d C R such 

that  c f  re+n-1 + f d  = 1. Furthermore, it was shown that  a complete set of 

(m + n) x (m + n) matrix units in R is given by 

(2.3) Eli = f i - l e f m + n - l d J - 1 .  

Therefore, for e := E n  = c f  re+n-i, the work in [AAR] gives R - Mm+n(A), 

with the base ring A := EndR(eR). We shall now compute this endomorphism 

ring more explicitly. Consider the sequence of right R-modules: 

(2.4) 0 * f R  , R * eR *0, 

where the second map is an inclusion, and the third map is left multiplication by 

e. This is a zero-sequence since e- f R  = e f ' ~ + ~ - l f R  = c fm+nR = O. We claim 

that  this sequence is exact. Indeed, if r E R is such that  er -- O, then in view of 

the equation e + f d  = 1 we have r = (1 - e)r = f d r  C f R .  Therefore, 

A -- EndR(eR) -- E n d R ( R / f R )  ~- I R ( f R ) / f R ,  
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where the last isomorphism follows from [Co2: (0.7.1)]. | 

The quotient ring IR(fR)/ fR above is known as the eigenring of f ;  we shall 

henceforth denote it by ER(f) .  The advantages in choosing ER(f)  to be the base 

ring are two-fold. First, this ring depends only on a single element f E R, and not 

on the other elements a, b, c, d, e. Secondly, the eigenring ER(f)  is a ring which we 
can often compute explicitly. In concrete situations, we have usually much better 

control over the nilpotent element f than over the idempotent e = cf m+n-1. 

Remarks 2.5: (A) In the situation of Theorem 2.2, we have in fact the following 

two equations giving explicitly the idealizer ring IR(fR):  

(2.6) ere | fR  = IR(fR) = Rf re+n-1 + fR. 

The proof of these equations will be left to the reader. 

(B) Strictly speaking, ER(f)  should be called the right eigenring of f .  But 

fortuitously, in the situation of Theorem 2.2, this right eigenring turns out to be 

isomorphic to the left eigenring IR(Rf)/Rf.  This fact will not be needed in the 

rest of the paper, so its proof will also be left to the reader. 

Example2.7: Consider a M o r i t a r i n g o f t h e  form T = ( R V )  as in 
W S ' 

[Ro: p.35, p.471]. Here R, S are rings, Y is an (R, S)-bimodule, W is an (S, R)- 

bimodule, etc. Suppose R, S are both k x k matrix rings, with matrix units 

I I are clearly matrix units for T, so T {eli} and {e~j}. Then Eij := 0 e~j 

is a k x k matrix ring over C := EllTEn. An easy calculation shows that  C 

is the Morita ring ( e'weeRe e'se'eVe' ) ,  where e =  e11~ e'= e~l. If R (resp. S) 

comes with elements a, f ,  b (resp. a', f', b') as in Theorem 2.1 which give rise to 

the matrix units {e~j} (resp. {e~j}), one can apply Theorem 2.2 above to express 

the base ring C in terms of f and f, alone, namely: C_~ ( En(f) Ev ) 
Ew E s ( f ' )  ' 

where 

E v : = { v E V :  v f ' E f V } / f V  and E w : = { w C W :  w f E f ' W } / f ' W .  

Details of the verifications will be left to the reader. 
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3. M a t r i x  r ings  ar is ing  f r o m  Ore  ex t ens ions  

In this section, we give a few applications of Theorems 2.1 and 2.2 to the study of 

Ore extensions. For the reader's convenience, we first recall some notational con- 

ventions. By an Ore extension, we mean a skew polynomial ring S := R[t, a, 5], 

where a is an endomorphism of the ring R, and 5 is a a-derivation on R (an 

additive map satisfying 6(rr') = a(r)5(r') + 5(r)r' for all r, r '  E R). Elements of 

S are of the form ~-~rit ~ (with rl E R), and are multiplied according to the rule 

tr = a(r)t  + 5(r) (for all r E R). In the classical case when R is a division ring, 

proper quotient rings of S are all artinian, so the simple quotient rings of S are 

always matrix rings (over division rings) by Wedderburn's Theorem. For explicit 

examples of this nature, see, for instance, [JS: (1.3.15), (1.3.27)], [Ch3: (4.5)]. If R 

is not a division ring, the chance is not as good, but under suitable assumptions, 

certain quotients of S may still be matrix rings; see, for instance, [GW: Ex. 2ZG]. 

The first theorem in this section completes a result in [AAR]. In the latter, the 

Ore extension quotient T studied below was shown to be a pn • p~ matrix ring; 

using Theorem 2.2, we identify a natural base ring for T. 

THEOREM 3.1: Let R be a ring of prime characteristic p > O, and let ~ be a 

derivation on R such that 6 pn -~- 0 and 1 E 6pn-1 (R), where n >_ 1 is a fixed 

integer. Consider the Ore extension R[t, ~], and let T = R[t,6]/(tv~). Then 

T - Mp~(R~), where R~ := ker(6) is the ring of constants of R under the 

derivation 5. 

Proof" Let f be the image of t in T. In [AAR], it is shown that there is an 

equation 

af  p'~-I + fPn-P'~-lb = 1 E T 

for suitable a, b E T. Since we also have fP~ = 0 ,  Theorem 2.2 implies that  

T ~- Mp=(A), where A = ET( f ) .  We finish by showing that  this eigenring is 

isomorphic to R~. For convenience, we identify R~ with its image in T. If we can 

show that  

(3.2) IT ( fT )  = f T  @ R~, 

then clearly E T ( f )  = I T ( f T ) / f T  ~ R~. To prove (3.2), first note that  any 

r E R~ commutes with f ,  so in particular r E IT( fT) .  Secondly, if r E R~ N f T ,  

then, in R[t, 5], we have r E t R  + (t p~) = tR, which implies that  r = 0. Finally, 
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let g �9 R[t, 5] be the preimage of an arbitrary element in I T ( f T ) ,  and write g 

in the form ~--~ tiai. (For the argument below, it is somehow more convenient to 

express g as a polynomial with coefficients on the right.) Since f T  C_ I T ( f T ) ,  it 

follows that  a0 = ~ - ~ - ~ > l f i a ~  E I T ( f T ) ,  so that aot �9 t R  + (t p") = tR.  On 

the other hand, aot = tao - 5(a0), so we must have 5(a0) = 0, i.e. a0 �9 R~. This 

implies that  ~ �9 f T  + R~, so the equation (3.2) follows. II 

Remark 3.3: It is of interest to point out that the assumption 1 �9 5 p~-I (R) 

is crucial for the validity of the above theorem. To see this, consider the case 

when R is a polynomial ring k[x, y] over a field k of characteristic 2, and 5 is 

the k-derivation on R with 5(x) = 0 and 5(y) = x. In this example, we have 

5 2 = 0 but  1 ~ 5(R). (Here we are dealing with p = 2 and n = 1.) We claim that  

T = R[t, 5]/(t 2) has no nontrivial idempotents; in particular, T cannot be a 2• 

matrix ring. Indeed, if e = a + bt + (t 2) E T is an idempotent (where a,b �9 R),  

then 

a + bt - (a + bt)(a + bt) - (a 2 + b . 5(a) ) + b . 5(b)t (mod(t2))  

implies that  b = b. 5(b) and a 2 + b. 5(a) = a. Since 5(b) r 1 (as we have already 

observed), we must have b = 0 and a = a 2, so e can only be a trivial idempotent. 

Example  3.4: Let R = k[x], where k is a field of characteristic p > 0, and let 
d 5 be the k-derivation ~ on R, so that 1 = 5(x) E 5(R). It is easy to see that  

5 p = 0, and that  the ring of 5-constants in R is R~ = k[xP]. For the Weyl algebra 

R[t, 5], Theorem 3.1 (for n = 1) gives then an isomorphism 

R[t, 5]/(t p) ~ MB(R~) = gp(k[xP]) ~- Mp(R).  

As is pointed out in [AAR], this isomorphism can be obtained from (a transfor- 

mation of) [GW: Ex. 2ZF]. 

In the rest of this section, we shall study the Ore extension S = R[t, a, 5] itself,  

instead of its quotient rings. Goodearl has shown (cf. [Go: (4.6), (7.5), (7.7)]) 

that  S can sometimes be an n x n matrix ring (for some n > 1); we shall t ry  

to develop this theme further. The following somewhat surprising result shows 

that,  assuming only the existence of an element b with certain mild properties in 

R, S will already be a matrix ring (of even size). The argument we use demon- 

strates a curious connection between the Agnarsson-Amitsur-Robson equations 

in Theorem 2.1 and the formation of an Ore extension. 
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THEOREM 3.5: Let  S = R[t, a, 5] where R r 0, and let m,  n be posi t ive  integers. 

Suppose R contains an dement  b such that  b "~+~ = O, and u := 5(b'~), v := 5(b ~) 

are in U ( R )  (the group of  units o f  R).  Then m = n, and S -~ M2~(A), where 

A = Es(b).  If, moreover, b E rad(R) ( the Jacobson radical o f  R) ,  then m = n = 

1, and S - M2 (A). 

P r o o ~  F r o m  b m+n = 0, we  get 

0 = 5(bmb '~) = a(bm)5(b n) + 5(bm)b ~ = a(bm)v + ub n. 

Since u, v E U(R) ,  this gives 

( 3 . 6 )  = 

On the other hand, we have tb m = a(bm)t  + 5(bm). Left-multiplying this by u -1 

and using (3.6), we get 

( u - l t ) b  m = u - l a ( b m ) t  + 1 = - b n ( v - l t )  + 1 

in S. By Theorem 2.2, it follows that  S -- Mm+n(A),  where A = Es(b).  

Next, we shall prove that,  under the hypotheses of the theorem, we must have 

m -- n (and therefore S =~ M2~(A)). Assume, on the contrary, that  n r m; say, 

n > m. From v = 5(b~-mb m) -- a ( b ~ - m ) u  + 5(bn-m)b m, we get 

(3.7) o-(b n - m )  : v u  -1  _ ~(bn-m)bm?.t -1 .  

On the other hand, left-multiplying (3.6) by b m, we get b m u - l a ( b  "~) = 0. Using 

this with (3.7) above, we see that  

(3 .8 )  ~(b  n) ~- ~r(bn-m)o-(bm) --~ [v?~ - 1  - ~(bn-m)bmu-1]6r(b  m) : v l t - l o - (bm) .  

By induction on r > 1, we shall now show that  

(3.9) a(b ~)  = (uv-~)~a(bm+~(~-~)).  

For r = 1, this follows from (3.8) above. Inductively, if (3.9) holds for some r, 

then 

= 

-_ (uv-1), '+la(bm+(~+l)(n-m)).  
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Now, for a sufficiently large integer r, we'll have r(n - m) > n, so (3.9) implies 

that  a(b m) = 0 (since b n+m = 0). Going back to (3.6), we have then b n ---- 0, SO 

V = 5(b ~) = 0. This is a contradiction, since R is a nonzero ring. 

To prove the last part  of the theorem, we shall proceed independently of the 

arguments above. Assume now that  b E rad(R). By symmetry, it suffices to 

prove that  m = 1. Suppose, instead, that  m > 2. Then 

U ---- 5 (bm- lb )  : o '(bm-1)5(b) + 5(bm-1)b  

implies that  

o-(bm-1)5(b) = it - 5 (bm-1)b  e U ( R )  -~ r a d ( R )  C_ U ( R ) .  

Thus, R has a unit which has a nilpotent left factor (namely, a(bm-1)).  This is 

impossible in a nonzero ring. | 

Examples 3.10: (A) An example for the case b E rad(R) is provided by (R, a, 5) 

where R is the ring of dual numbers k[b] over a field k (with b 2 = 0), a is the 

k-automorphism of R defined by a(b) = -b ,  and 5 is the a-derivation defined 

by 5(k) = 0 and 5(b) = 1. By Theorem 3.5, S = R[t,a,  5] ~ M2(Es(b)) .  We 

leave it to the reader to show that  the eigenring Es(b) here is isomorphic to the 

(ordinary) polynomial ring k[t]. 

(B) An example for the case m = n = 2 (with necessarily b ~ rad(R)) can 

be constructed as follows. Let W = k(x,  y) be the Weyl algebra (with relation 

yx  - xy  = 1) over a field k of characteristic 2, and let 5 be the (ordinary) k- 

derivation on W with 5(x) = 1 and 5(y) = x. (Note that  5 "respects" the relation 

yx  - xy  = 1, which is essentially why it exists.) From 5(y 2) -- 5(y)y + yh(y) = 

x y + y x  = 1, we get 5(y 4) = 5(y2)y2+y25(y2) = y2+y2 = 0. Noting that  y2 (and 

hence y4) is in the center of W, we can form the quotient ring R :-- W / y 4 W .  

Since 5(y 4) = 0, 5 induces a derivation on R, which we again denote by 5. For 

the element b := y + y4W E R, we have therefore b 4 --: 0 and 5(b 2) = 5(y 2) = 1. 

It  follows from Theorem 3.5 that  the Ore extension S = R[t, 5] is isomorphic to 

g 4 ( E s ( b ) ) .  

Remark: In connection with Theorem 3.5, the notion of a "c.v. polynomial" 

introduced in ILL2] can be brought to bear. By definition, a c.v. ("change-of- 

variable") polynomial is a polynomial p(t) C S such that  p(t) b = a' (b)p(t) + 5' (b) 

for every b E R, where a ~ is some endomorphism of R, and 5 ~ is some a~-derivation. 
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Using such a c.v. po lynomia l  p(t) (if it exists) in lieu of t, we see by the same 

a rgumen t  as in the proof  of Theorem 3.5 that ,  if R is nonzero and contains an 

element b such t ha t  b m+~ = 0 and 6'(bin), 6'(b n) E U(R),  then  necessarily m = n, 

and S = R[t, or, 6 ] -  M2~(Es (b ) ) .  

Now, even if we don ' t  have a c.v. polynomial  a t  our disposal, the idea of t ry ing  

to "commute"  a skew polynomia l  with a scalar can be used to find more  instances 

where an Ore extension S is a full ma t r ix  ring. This t ime, we shall choose the 

skew po lynomia l  to be t n-I  and the scalar to be b n - l ,  where n is a fixed integer 

such t ha t  b ~ = 0. In order to make  the necessary computa t ions ,  we shall need 

some more  nota t ions  in working with an Ore extension S = R[t, a, 6]. As in [LLI: 

p. 310], we define f j  E End(R,  +)  to be the sum of all poss ib le / - fo ld  p roduc t s  

wi th  j factors of a and i - j  factors of 6. (For instance, f~ = 6 i, f/~ = a i, 

f~ = 6~- 1 a + 6i-2a6 + . . .  + 6c~6~-2 + aSi-  1 etc.) The  opera tors  f j  arise na tura l ly  

in connect ion with the commuta t i on  rule 

i 

(3.11) t~r = E f ~  (r)tj  (V r E R), 
j=O 

which is easily verified by induction. We first prove the following pre l iminary  

result.  

LEMMA 3.12: Let S = R[t,~,6] be as above, where R is any ring. Let  b E R be 

such that b6(b) = 6(b)b and a(b) = qb = bq, where q E R. Then, for any  i _> j _> 0 

and any  k >_ i - j ,  we have fr k) E bk+J-iR. 

Proo~ We proceed by induction on i. First  consider the case i = 1. If  j = 1 

also, we have 
f~(b k) = a(b k) = a(b) k = (bq) k = bkq k, 

which lies in bkR = b k + l - l R .  If  j = 0, we have f l (bk)  = 6(bk), so it 

suffices to show tha t  5(b k) E bk- lR .  Now, by a s t ra ightforward compu ta t i on  

(see [Go: L e m m a  1.1]), we have (for any b): 

k - 1  

6(b k) =  (b)J6(b)b k - l - j  
j=O 

Since a(b) = bq and b commutes  wi th  q and 5(b), this yields 

(3.13) 5(b k) = b k - l ( l + q  + q2 + . . .  + qk-1)5(b ) E bk-l  R. 
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Therefore, we are done in the case i = 1. Now suppose the lemma is true for some 

i. To get the ease i+1,  we use the (obvious) operator equation f j+ l  = af j_ l+df f j "  

Applying this to b k (k > i + 1 - j )  and using the inductive hypothesis, we have 

yj+l(bk) = (Tfj_l(b k) § 5Ij(b k) 

= a (bk+J- l - i r l )  + di(bk+J-lr:) (for suitable r l , r2  C R)  

= bk+j-l-iqk+j-l-i6r(rl) § bk+j-iqk+j-i~(r2) + ~(bk+J-i)r2. 

By (3.13), 5(b k+j-~) = bk+J-l - lr3  for some ra E R. This, together with the 

above equations, clearly shows that  f j+l(bk)  C bk+J-(i+l)R, as desired. | 

We can now state our next main result in this section, which is inspired by an 

earlier result of Goodearl  [Go: (7.5)]. 

THEOREM 3.14: Let  S = R[t,a,~],  and let b E R be such that  b ~ = O, b~(b) = 

~(b)b and a(b) = qb = bq for some q E R.  I f  u := (~n-l(bn-1) is a unit of  R 

commut ing  with b, then S is an n x n matr ix  ring; in fact, S -- M~ (A) where A 

is the eigenring Es(b) .  

Proof'. Using (3.11) and Lemma 3.12, we have 

n--1 

t n - l b n - l  = E f ? - l ( b n - 1 ) t J  

j----0 

n--1 

~" E f ;  -l(bn-1)tj § fg-l(bn-1) 
j--1 

n--1 
= + e ~  

j = l  

for suitable .sj E S. Therefore, we have 

(3.15) t n - l b  n-1 = bs + u for some s E S. 

Since b commutes with u (and hence also with u - l ) ,  left-multiplication of (3.15) 

by u -1 yields 

( u - l t n - 1 ) b  n - 1  = u - l ( b s  + u) = b (u - l s )  + 1. 

Thus, we have ab n-1 +bc = 1 for suitable a, c C S, and Theorem 2.2 implies tha t  

S -~ Mn(A)  for A = Es(b).  | 
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Note that ,  in the case n = 2, Theorem 3.5 would have given a bet ter  result, 

with only the hypotheses b 2 = 0, ~(b) E U(R),  and nothing else. Thus, one should 

use Theorem 3.14 only when n _> 3. A similar remark applies to Corollary 3.16 

below. 

Note tha t  the crucial condition in Theorem 3.14 is tha t  u :=  5 ~ - l ( b ~ - l )  be a 

unit in R (commut ing  with b). If  we assume a couple more mild properties on q 

and on 5(b), this condition can be formulated more explicitly, as follows. 

COROLLARY 3.16: Let  S = R[t, a, 6]. Suppose R contains an element b such that  

b ~ = O, b~(b) = ~(b)b and a(b) = qb = bq, where q E R. If, moreover, q, 5(b) E R~, 

~(b) E U(R) ,  and ui := 1 + q + . . .  + qi-1 E U(R)  for all i < n, then S is an n x n  

matr ix  ring; in fact, S --- M n ( A )  where A is the eigenring Es(b) .  

Proof'. Recall from (3.13) tha t  ~(b k) = bk-lukS(b) .  Since q and 5(b) both  belong 

to R~, so does the product  UkS(b). Therefore, another application of ~ gives 

Proceeding in this manner,  we get 

For k = n - 1, it follows easily from our hypotheses tha t  u :=  5n-1(b~- l )  is a 

unit, and tha t  ub = bu. Therefore, Theorem 3.14 applies. | 

Remark  3.17". We may  further simplify our hypotheses by assuming tha t  5(b) = 

1. In  this case, certainly 5(b) is a unit  commut ing  with b, and is of course a 

5-constant.  If  we Mso assume tha t  a(b) = b, then we can take q = 1, which 

certainly commutes  with b and is a 5-constant. In  this case, ui is just  i �9 1, so 

we need only assume tha t  each of 2, 3, ..., n - 1 is a unit  in R. This is true, for 

instance, if R is an algebra over a field whose characteristic is either 0 or at  least 

n. Therefore, there are many  concrete situations to which our results, Theorem 

3.14 and Corollary 3.16, can be applied. 

I t  is of interest to  compare  our result, Theorem 3.14, with Goodear l ' s  [Go: (7.5)]. 

In Theorem 3.14, our hypotheses on b are of a "local" nature,  and are consid- 

erably weaker than  those in [Go: (7.5)]. For instance, we need not assume (as 

Goodear l  did) tha t  b, q are central elements in R, or tha t  1 + q + . - .  + q~- i  = 0 
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(which would imply that q is an nth root of unity). If we work under Good- 

earl's assumptions in [Go: (7.5)], then in the notations of Theorem 3.14 it can 

be checked that  (~n is an ordinary derivation stabilizing bR. In this case, it is 

relatively straightforward to compute that the eigenring Es(b) is isomorphic to 

the differential polynomial ring (R/bR)[t ' ,  6~]. Therefore, Theorem 3.14 will give 

directly Goodearl's conclusion that  R[t, a, 6] TM M,,(  ( R/bR)[t ' ,  (~]). 

4. R e c o g n i t i o n  t h e o r e m s  and  n t h  roo t  p r o p e r t i e s  

In this section, we derive a list of new characterizations of an n x n matrix ring 

R involving n th  roots of nilpotent matrices over R. The result (Theorem 4.1) 

below may be viewed as a multipronged extension of Robson's theorem [R: (2.2)], 

which is used in the proof (see (1) ~ (7)). Part of the subtlety of Theorem 4.1 

lies in the repeated changes of quantifiers from one set of conditions to another. 

THEOREM 4.1 : Let R be a ring, and n >_ 2 be a fixed integer. Then the following 

statements are equivalent: 

(1) R is an n x n matrix  ring (over some ring A). 

(2) For any r _> 2, the matrix  

(3) 
(4) 

(4.2) Fo := E2,1 + E3,2 + " -  q- E . . . .  1 �9 Mr(R)  

has an n th  root in Mr(R) .  

For some r >_ 2, the matrix Fo in (4.2) has an nth  root in Mr(R) .  

For some r _> 2, there exist non-right-O-divisors d l , . . . ,  d~-i �9 R, a t / eas t  

one of  which is a unit, such that the matrix 

(4.3) F := diE2,1 + d2E3,2 + " "  + d r - l E  . . . .  1 �9 Mr(R)  

has an nth  root in Mr(R) .  

(5) For any r > 2 and any central elements d l , . . . ,  dr-1 E R, the matrix  F in 

(4.3) has an nth root in Mr(R) .  

(5') For any r > 2 and any units d b . . . ,  d~-i E R, the matrix  F in (4.3) has an 

nth  root in Mr(R) .  

(6) There exist elements b , f , g  E R such that f'~ = g~ = 0 and bf  "-1 + 
b "'~-2 + 2b 'n-3 g ] g ] + . . . + g ~ - l b  �9 U(R).  

(6') There exist elements f , g  �9 R such that fn  = g~ = 0 and f n -1  + g f n - 2  + 

g2fn-3  + . . .  -t- gn-1 �9 U(R). 
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(7) There exist elements c, g �9 R such that gn __ 0 and cg n-1 -t- gcg ~-2 + 

g2cgn-3 + �9 �9 �9 + g ~ - l c  = 1. 

(7') There exist elements c,g �9 R such that  gn -- 0 and cg "~-1 + gcg n-2 + 

g2cg"-3 + . . .  + g n - l c  �9 U(R) .  

(8) For any unit u �9 U(R) ,  there exist elements b , f , g  �9 R such that  f "  -- 

gn = 0 and u = b f  ~-1 + gbf  n-2 + g2b f" -3  + . . .  + g~- lb .  

Proof." We first prove the cyclical equivalence of (1) through (7) (leaving out  (5'), 

(6') and (7') for the moment) .  To begin with, we have the obvious implications 

(5) ~ (2) ~ (3) ~ (4). 

(4) ~ (6) Wi thou t  loss of generality, we may assume tha t  the element d~ in 

(4) is a unit. Suppose F -- X ~ for some X = (x~j) �9 M~(R).  Then,  X commutes  

with X ~ = F .  Writ ing out the first two rows of the two sides of the equat ion 

F X  = X F ,  we have 

( 0  0 0 ) 0) 
d l X l l  d l X l 2  " ' "  d l X l r  x22d l  x23d2 . - .  x 2 r d r - 1  0 " 

Since the di 's are not  right-0-divisors, we must  have Xlj = 0 for all j k 2, and 

therefore x2k -- 0 for all k >_ 3. Writ ing 

f ~ Xl l  , g ~ X22 , 

we can express X as a block matrix* 

n th  power of X has the form X ~ = 

0 

u 

and b ~ -  X21 , 

, Z~ , so it follows tha t  y n  = 

0 \ 
) .  On the other hand, by an easy induction on n, we have y n  _- 

0 

0 ) ,  where gn 

U :=  bf  n-1 + g b f  '~-2 + g2bf~-3 + . . .  +g '~- lb .  

Thus we must  have f n  = gn = 0 and u = dl C U(R).  

(6) ~ (7) Let  u := bl n-1 + gbl ~-2 + ~2bf~-3 + . . .  + gn-lb �9 U(R) in (6). 

Left-mult iplying by g and right-mult iplying by f ,  we get 

gu = gb f  ~-1 + g2bf  n-2 + . . .  + g n - l b f  = u f .  

* The method of comparing entries of F X  = X F  actually shows X to be a lower 
triangular matrix. This information is, however, not needed for the arguments 
to follow. 
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Therefore, for v := u - I ,  we have f v  = vg, so by induction on i _> 0 we get 

f f v  = vg ~. Right-multiplying the expression for u by v, we get 

n--1 n--2 1 = b f  v + g b f  v + g 2 b f " - 3 v  + . . .  + g n - l b v  

bv = - 2 +  2by n-3 = b v g  '~-l + g  g g g + ' " + g ~ - l b v  

cg n - 1  -~- C n - 2  g2cgn- -3  = g g + + ' "  + g ~ - l c ,  

where c :-- by E R.  This proves (7). 

(7) ~ (1) is part of Robson's result, namely, (ii) ==~ (i) in [a: (2.2)]. 

(Incidentally, we shall not need the other parts of Robson's result.) 

(1) ==~ (5) Suppose R = M~(A), where A is some ring. Since the elements 

d{'s in (5) are central in R, they must be scalar matrices in Mn(A) [La2: p.5, 

Ex.l.9]; say d~ = a i I ,  where a{ E A, and I denotes the n x n  identity matrix over 

A. As usual, we identify M~(R) with M~,(A).  Under this identification, the 

matrix F E M~ (R) becomes the matrix 

(' 0 0 0 . . .  0 0 

a l I  0 0 

0 a2I 0 
(4.4) 

�9 . .  a~_lI 0 0 0 0 

with n • n blocks as its "entries"�9 We shall construct an explicit n th  root for F 

in M ~ ( A ) .  Consider a matrix 

C -: clE2,1 -4- c2E3,2 + ' "  + c ~ n - l E  . . . . . .  1 E M~n(A). 

By direct matrix multiplication, we see that 

6 2 : C2CLE3,1 + c3c2E4,2  n u ' ' "  + C r n - l C r n - 2 E r n , r n - 2 ,  

C 3 = c3C2ClE4,1 -4- c4c3c2E5 ,2  A- " '"  -4- c r n - l C r n - 2 c r n - 3 E r  . . . . .  3, 

etc. Therefore, if we choose the ci's such that cj~ = aj for all j < r - 1, and 

c~ = 1 for all i not divisible by n, the power C = will be precisely the matrix in 

(4.4), i.e. C '~ = F E M~n(A) = M~(R), as desired. 

Having proved the equivalence of (1) through (7), it is now easy to extend 

the equivalence to the other four conditions (5'), (6'), (7') and (8). First, it is 

clear that  any of these conditions implies one of the conditions (1) to (7). (For 
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instance, (5') implies (2), and each of (6'), (7') and (8) implies (6).) Therefore, 

it suffices to show each of them also follows from one of (1) through (7). 

(7) ==~ (7') is clear. 

(7) ~ (8) Given u E U(R) and the equation in (7), let b := cu. Then 

c = bu -1, and we have 1 = bu-19 '~-1 + gbu- lg  n-2 + . . .  + 9n- lbu-1 .  Right- 

multiplying by u, we get 

u = b u - l g n - l u  + gbu- lgS-2u  + .. �9 + g'~-lb 

= b(u- lgu)  s-1 + gb(u-lgu) s-2 + . . .  + gS-lb.  

Therefore, for f := u - lgu ,  we have f s  = u - l g S u  __= 0 and u = bf  n-a +gb fS -2  + 

g2bfn-3 + . . .  + g'~-lb. This checks (8). 

(1) ~ (6') Say R = Ms(A) .  Let 

f ----- El,2 -+- E2,3 -[- "'" + En- l , s  and g = E2,1 + E3,2 + "'" 9- En,n-1 in R, 

which, of course, satisfy f "  = gn = 0. A direct calculation shows that  

f s - 1  + g fn -2  + g2fn-3 + . . .  + gn-1 

is a matrix with l 's  on the "opposite diagonal" (the (1, n), (2, n -  1 ) , . . . ,  (n, 1) 

entries), O's above and integers below this opposite diagonal. Such a matrix is 

obviously invertible in M s  (Z), and therefore also invertible in R = M s  (A). This 

checks (6'). 

(2) ~ (5') The trick here is that,  in any Mr(R)  (r > 2), we can construct an 

n th  root of F from an nth root of F0 (if the di's are units in R). In fact, let Xo 

be an n th  root of F0 in M~ (R). Consider the invertible diagonal matrix 

D := diag(1, d,, d2dl, d3d2dx, . . . ,  d ~ - l . ' ,  d2dx) E M~(R), 

and let X := D X o D  -1. Then X n = D X ~ D  -1 = DFoD -1. The matrix on the 

RHS is computed by left-multiplying the rows of Fo by 1,dl,d2da, d3d2dl, . . . ,  

and then right-multiplying the columns of the resulting matrix by 

1, d~ -1, d-~ld21, dl ld21d31,  .... A moment's reflection shows that  this yields the 

matrix F.  Therefore, X s = DFoD -1 = F, as desired. | 

Remarks 4.5: (A) For the proof of (1) ===~ (5) above, it might seem to a casual 

reader that we were only using the fact that M~(R) is an rn • rn matrix ring 

(instead of the stronger fact that R itself is an n x n matrix ring). However, this 
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is not the case. For the argument above to work, we need to have R = Mn(A) 

in order to identify F with the matrix in (4.4); this is not guaranteed by an 

arbitrary isomorphism from Mr(R)  to Mrn(A). In general, if we are only given 

that Mr  (R) is an rn x rn  matrix ring, the condition (5) (or equivalently, any of 

the other conditions) in the Theorem will not follow. To see this, look at the case 

when n = 2, and use the known fact that there exist (noncommutative) domains 

R such that  M2(R) ~ M4(R) (see [Col], or [La4: (8.3)]). For such a ring R, 

M2(R) is a 4• matrix ring, but the fact that R is a domain clearly precludes R 

from being a ring of 2• matrices. Therefore, none of the conditions (2) through 

(8) can hold. 

(B) In the condition (4) above, it is also essential to assume that at least one 

of the non-0-divisors dl,- �9 -, dr-1 be actually a unit in R. For instance, let R be ( ) ( ) (00) the ring Z 2Z and let f =  0 2 a n d g =  i n R .  Then 
2Z Z ' 0 0 ' 2 0 

dl := f + g  = ( 0  2 ~ is anon-0-divisor but not auni t  inR.  Since f2 = g2 = 0, 
\ 2 0 ] 

( o o)has squ reroot (: o)inM IR/, gowever, the matrix dl 0 g 

not a 2 x 2 matrix ring since it admits a homomorphism into Z2 • Z2 sending 

(aij) into (all, a22) (mod 2). The same example shows that, in the conditions 

(6), (6') and (7'), it is essential to assume that the sums there be units, instead 

of just non-0-divisors. 

(C) In case the conditions of Theorem 4.1 hold, a base ring for the n•  matrix 

ring R can be easily computed, by our earlier result (Theorem 2.2). In fact, if R 

contains elements c, g such that gn = 0 and cg ~-1 + gcg ~-2 + g2cgn-3 + " "" + 

g~-lC ---- 1 (as in (7')), then we have c g ~ - l + g d  = 1 for d := c g ~ - 2 + g c g n - 3 +  .. .+ 

gn-2c. From Theorem 2.2 and the proof of Theorem 4.1, it follows immediately 

that,  under any of the conditions (6), (6'), (7), (7'), or (8), a base ring for the 

n •  matrix ring R can be taken to be the eigenring ER(g). 

It is also worth pointing out that,  in the case n = 2, (1) ~ (6') in Theorem 4.1 

recaptures the result of Fuchs, Maxson and Pilz ([FMP, Th. III.2], [Fu: Cor. 4]) 

on the characterization of 2 x 2 matrix rings, namely: R is a 2 • 2 matr ix  ring iff 

it contains elements f ,  g such that  f2 = g2 = 0' and f + g E U(R) .  The general 

equivalence (1) ~ (6') in Theorem 4.1 is thus a generalization of the Fuchs- 

Maxson-Pilz result to the n• case. Note that our generalization is different from 

that of Fuchs in [Fu: Th. 1]. Fuchs' generalization involves the use of annihilators 
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in R, but  our generalization involves only an existential equation with nilpotent 

elements in R, in the same spirit as in the 2 • 2 case. 

For a concrete and explicit conclusion deducible from Theorem 4.1, we record 

the following: 

COROLLARY 4.6: Let di c R be as in (4) in Theorem 4.1, and assume that R ad- 

mits a (unital) homomorphism into a nonzero ring S which is either commutative, 

or reduced, or without nontrivial idempotents. Then the matrix 

F = diE2,1 4- d2E3,2 4- .-. 4- dT._,E . . . .  l E Mr(R)  

cannot have an n th  root in Mr(R)  for any r, n > 2. 

Proof: Assume that F has an nth root in M~(R). Then, by the Theorem, R is 

an n x n  matrix ring. But then S is also an n x n  matrix ring (by [Ro: (1.1.22)]), 

which is impossible. I 

5. A r e s u l t  on  h i d d e n  m a t r i c e s  

We conclude this paper with a generalization of an arithmetic result of 

Levy, Robson and Stafford on 2 x 2 matrices over the integer quaternions H -- 

Z @ Zi @ Zj  | Zk. In [LRS: (6.8)], it is shown that,  for any odd prime p, the 

subring T(p) = H + M2(pH) of M2(H)  is a 2 x 2  matrix ring i f fp  = 1 (mod4). 

The proof of this result in [LRS] involves the notion of genus class groups. We 

shall improve this result below by considering T(c) for any positive integer c, 

using (for the sufficiency part) entirely elementary arguments. 

PROPOSITION 5.1: For any positive integer c, the ring T(c) -- H -4- M~(cH) is a 

2 x 2 matrix  ring if[ any prime divisor pIc satisfies p -- 1 (rood 4). 

Proof: For any prime pic, we have T(c) C_ T(p). If p = 3 (mod4), T(p) is 

not a 2 x 2 matrix ring by [LRS: (6.8)], so neither is T(c). Now assume p -- 2 

(so c is even). There is a ring homomorphism r : T(2) ) H / 2 H  sending a 
/ 

t 
\ 

( u / E T ( 2 ) t o t  (mod 2H). Since H / 2 H  is commutative, T(2) matrix 
\ v w / 

is not a 2 x 2 matrix ring, so neither is T(c). This proves the "necessity" part 

of the Proposition. To prove the "sufficiency" part, assume now that  any prime 

dividing c is congruent to 1 (mod 4). Then the same property holds for c 2. By a 
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s tandard result in number theory [NZ: p.151], there is a primitive expression of 

c 2 as a sum of two squares, i.e. an expression c 2 = a 2 + b 2 where (a, b) = 1. I t  

follows tha t  (c 2, 2a) = 1, so there is an equation 

c 2 d - 2 a d ' = l  (where d , d ' E Z ) .  

To prove tha t  T := T(c) is a 2• matrix ring, it suffices (by (7) ~ (1) in Theorem 

4.1) to construct two matrices A, F E T such that  F 2 = 0 and A F  + F A  = 1. 

Let x =  a i + b j  C H,  a n d w  = c k  E cH. Sincex,  wan t i commute ,  w i t h x  2 = 

- ( a 2 + b e ) = - c 2 = w  2, the matrix F = (Xw - w )  E T h a s x  square zero. 

Letting A be the matrix ( d'i 0 ) cdk dJi E T, we check easily that  A F  + F A  = 1. 

| 

In the process of writing up this paper for publication, we received a research 

report  of Chatters  [Ch4] from which we learned that  he has also given similar 

constructions of the matrices A and F, in the "sufficiency" proof above. However, 

our explicit description of the integers c in the Proposition seems new, and this 

description led directly to the complete "iff" formulation in Proposition 5.1. 
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